

NS 102 Lecture 11

The Well Tempered Cosmology Class

Open:

Brandenberg Concerto #6 in B^b major BWV 1051 J. S. Bach

Close:

We Are All Made of Stars
Moby

Johann Sebastian Bach (1685-1750)

GnatSigh News (all the news that fits)

- Website http://home.fnal.gov/~rocky/NS102/
- Messier Objects
 http://www.seds.org/messier/
- Today: Shapley-Curtis debate. Shapley-Curtis information at http://antwrp.gsfc.nasa.gov/diamond_jubilee/debate.html
- Well tempered <u>http://www.bachfaq1.orgf/welltemp.html</u>
- Original composition "Car horn in A^b "

Lab this week: Non-Euclidean Geometry

The Cosmological 10 Mpc **Distance Ladder** 10 kpc few kpc ~100 pc (variability) Cepheids nearby stars 1 AU main (variability) RR Lyrae clusters sequence) parallax) (geometry) (geometry) Sun (geometry) Moon 80 clusters Earth

MESSIER CATALOGUE

The composition of the universe

Hubble Ultradeep Field

10,000 here ——

50 thousand million over entire sky

A view of the universe, circa 1905 A.D.

Kapteyn Universe

Heber Curtis 1872 - 1942

Harlow Shapley 1885 - 1972

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

M101

Adriaan van Maanen 1916

M101

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

Edwin Hubble 1884 - 1953

University of Chicago 1909 National Champions

Two famous Rhodes Scholars:

Politics is for the moment; an equation is forever.

A. Einstein

100-inch Hooker Telescope on Mt. Wilson

Hubble's Hooker Chair

TIME

THE WEEKLY NEWSMAGAZINE

ASTRONOMER HUBBLE Will Palemae's 200 inch eye ser an exploding universe? (Science)

6-0ct 1923

The Cosmological 10 Mpc **Distance Ladder** 10 kpc few kpc ~100 pc (variability) Cepheids nearby stars 1 AU main (variability) RR Lyrae clusters sequence) parallax) (geometry) (geometry) Sun (geometry) Moon 80 clusters Earth

Cepheid Variable Star in Galaxy M100

HST-WFPC2

Control (Little)

Equipment Guide

$$t = \Delta t$$

c = velocity of wave $\Delta t = time difference$

$$D = c \Delta t$$

$$t = 2 \Delta t$$

$$D = c 2 \Delta t$$

$$D = c \Delta t$$

$$tt = \Delta t$$

$$d = v \Delta t$$

$$D = c \Delta t$$

$$t = 2 \Delta t$$

 $d = v \Delta t$

 $D = c 2 \Delta t$

$$\mathbf{D} = \mathbf{c} \quad \Delta \mathbf{t} - \mathbf{v} \, \Delta \mathbf{t}$$

$$\lambda = c \Delta t \pm v \Delta t$$

$$c \Delta t = \lambda_0$$

$$\Longrightarrow$$

$$\lambda = \lambda_0 \pm v \Delta t$$

$$\Delta t = \frac{\lambda_0}{c}$$

$$\Rightarrow$$

$$\Delta t = \frac{\lambda_0}{c} \qquad \Rightarrow \qquad \lambda = \lambda_0 \pm \frac{\mathbf{v}}{c} \lambda_0$$

$$\left| \frac{\lambda}{\lambda_0} = 1 \pm \frac{\mathbf{v}}{c} \right|$$

Frequency

$$c \Delta t = \lambda_0$$

$$\frac{1}{\Delta t} = \text{frequency} = v_0$$

$$\frac{c}{v_0} = \lambda_0 \qquad \frac{c}{v} = \lambda$$

$$\frac{\lambda}{\lambda_0} = \frac{\nu_0}{\nu}$$